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ABSTRACT 

Multivariate Analysis of some Gross Domestic Product variables and crime figures in Nigeria 

was investigated to determine the important economic variables and crime figure variables 

that have positive effect on Nigerian society. This study examined the performance of these 

variables using yearly Crime data betwixt 2012 and 2020 and quarterly Nigerian Gross 

Domestic Product data from 1981Q1-2019Q1.The methods utilised are principal components 

analysis(PCA), factor analysis(FA) and cluster analysis(CA) multivariate techniques. Using R 

statistical software, the data were analysed. This research used three Rotation Methods of the 

Principal Components Factor Analysis to describe the variability in both data sets. Then, find 

the optimal number of clusters using four Clusters Identification approaches, and group 

variables into more homogenous groups. This research was able to identify significant 

differences between (None and Varimax rotation methods) and the Promax rotation methods 

of the Nigeria Economic variables data considered, while there are no significant differences 

among the three different rotation method results for crime data (i.e. large and small sample 

sizes).  The communality and uniqueness of the factor analysis for the economic  variables 

showed that principal components lies between 78.2% and 99.5% respectfully, of the total 

variability; the communality and uniqueness of the factor analysis for the large sample size 

(crime variables) principal components lies between 17.7% and 99.5% respectfully, of the 

total variability while the communality and uniqueness of the factor analysis for the small 

sample size (crime variables) principal components lies between 18.1% and 99.3% 

respectfully, of the total variability. This study was able to determine seven cluster groups for 

the economic variables, also seven cluster groups for the large sample size of crime rate 

variables and five cluster homogenous groups for the small sample size of crime rate 

variables.  
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INTRODUCTION 

Crime analysis is an important study to society life and it is of interest to this research because 

of the consequences and penalties it attracts from fine to death. Thus, this study will estimate 

an economic model and also show the relationships that exist among the various crime types. 

Similarly, it is of great interest for this research to know the important Nigerian economic 

variables amongst others for the betterment of the country and states.  Over the years, 

researchers have given attention to the subject of classification/factoring-out of variables into 

pre-determined groups or to reduce the redundancy among the variables by using a smaller 

number of factors. Complex problems and the results of bad decisions frequently force 

researchers to look for more objective ways to predict outcomes. That is why this research is 

interested in comparing results obtained from these three methods (Principal Components 

Analysis, Factor Analysis and Cluster Analysis) to determine the more suitable one when 

larger/smaller numbers of variables are involved. Dimensionality reduction is an important 

part of a pattern recognition system. It is a process in which we represent a system having 

many degrees of freedom by a smaller number of degrees of freedom. The main aim of the 

dimensionality reduction algorithms is to obtain a compact, accurate representation of the data 

that reduces or eliminates statistically redundant components. Principal Component Analysis, 

Factor Analysis and Cluster Analysis are some of the techniques, which can be used for 

dimensionality reduction.    The aim of this study is to use Principal Components, Factor 

Analysis and Cluster Analysis to determine the important Nigerian economic variables 

amongst others and most crime variables that have effect on the Nigeria society. Thus, 

collected the data sets of Nigerian Gross Domestic Product (GDP) from 1981 to 2019 and 

Crime figure events in Nigeria from 2012 to 2020 (large and small data sets). The objectives 

of the study are to;  use three Rotation Methods of the Principal Components Factor Analysis 

to describe the variability in both data sets, find the optimal number of clusters using four 

Clusters Identification approaches, then group them into more homogenous groups and 

Compare the results obtained from the two data sets using objectives I and II. 

METHODOLOGY 

Principal Components Analysis (PCA) 

Principal Components Analysis is a useful statistical technique that has many applications in 

fields such as face recognition and image compression, and is a common technique for finding 

patterns in data of high dimension. It is concerned with explaining the variance – covariance, 

standard deviation, eigenvalue and eigenvectors structure through a few linear combinations 

of the original variables. Principal Components are particular (algebraically) i.e. linear 

combinations of the p random variables           . It depends solely on the covariance 

matrix or correlation matrix of           .   

Consider the linear combinations 
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    (3.1) 

where            are row vector and  ’s are column vector, such that 

   (             ),    (             )     (             ).   

Variance − Covariance Matrix 

We recall that covariance is always measured between 2 dimensions. There is usually more 

than one covariance measurement that may be calculated if we have a data set with more than 

2 dimensions. For 3 dimensional data set, (dimension a, b, c), we have: Cov(a, b), Cov(a, c) 

and Cov(b, c). 
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Then the population variance-covariance matrix (Abdi & Williams, 2010) is 
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Eigenvalues and Eigenvectors 

Many applications of matrices to technological problems involve A.X = X; where A = [aij] is 

a square matrix and  is a number (scalar). Clearly X = 0 is a solution for any value of    and 

is not normally useful. For non-trivial solution, i.e X ≠ 0, the values of  are called the 

eigenvalues, character values or latent roots (polynomial) of matrix A and the corresponding 

solutions of the given equations A.X = X are called the eigen vectors or characteristic 

vectors of A.  

From the linear combination of Xi.  i.e 
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 AX − X = 0 ,                                                                                    (3.6a) 

where the x’s are the eigenvectors and 

 |A-I| = 0                                                                                          (3.6b) 

 ’s are the eigen-values. 

Hence the coefficients      are collected into the vector. 
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  and    
  (          ) 

Are Eigen-vectors and Eigenvalues.  

 

First Principal Components Analysis (PCA 1) 
Y1, the first principal Components is the linear combination of x-variables that has maximum 

variance (among all linear combinations), being that it accounts or make up for as much 

variation in the data as possible. Specifically we will define coefficient p11211 ,...,,   for that 

Components in such a way that its variance is maximized, subject to the constraint that the 

sum of the squared coefficients is equal to one. This constraint is required so that a unique 

value may be obtained. 

More formally, select  p11211 ,...,,   that maximizes  

Var(Y1) =
'
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Second Principal Components (PCA 2)   
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Y2, the second principal Components is the linear combination of x- variables that accounts 

for as much of the remaining variations as possible, with the constraint that the correlation 

between the first and second Components is 0. Select  p22221 ,...,,   that maximizes the 

variance of this new components 

Var(Y2) = 
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                                                           (3.8)

 

 Subject to the constraint that the sum of squared coefficients adds up to one  
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Along with the additional constraint that these two Components will be uncorrelated with one 

another, 

Cov(Y1,Y2)  = 
'

1 2 1 2
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                 (3.9)                              

 

All subsequent principal Components have same property, they are linear combinations that 

account for as much of the remaining variations as possible and they are not correlated with 

other principal Components. We will do this in the same way with each additional 

components.  

 Proportion 

Proportion of variance explained by the k
th

 principal component is 

P.V = 
1 2 . . .

k

p



    
× 100%                                                          (3.10a) 

where k  is the k
th

 eigenvalues. 

 

Cumulative Proportion 
Cumulative proportion of variance explained by the first k

th
 principal components is 

 C.P.V  = 
1 2
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Factor Analysis  

In factor analysis we represent the variables y1, y2, . . ., yp as linear combinations of a few 

random variables f1, f2, . . ., fm (m < p) called factors. The factors are underlying constructs 

variables that “generate” the y’s. If the random sample y1, y2, . . ., yn from a homogeneous 

population with mean vector µ and covariance matrix ∑ is taken. 

The factor analysis model expresses each variable as a linear combination of underlying 

common factors f1, f2, . . ., fm, with an accompanying error term to account for that part of the 

variable that is unique (not in common with the other variables). 

Thus, for y1, y2, . . ., yp in any observation vector y, the model is given as 
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    (3.11) 

where: 

Coefficients     are loadings and serve as weights, which shows each y individually depends 

on the f’s (eigenvalues). 

Note: m should be substantially smaller than p; otherwise we have not achieved a 

parsimonious description of the variables as functions of a few underlying factors.  

A simple expression for the variance of y’s is  

  
imii ii

y   222 ...)var(
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                                               (3.12) 

Thus, the emphasis in factor analysis is on modelling the covariance or correlations among the 

y’s. Model (3.11) can be written in matrix notation as 

                                                                                     (3.13) 
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The assumptions can be expressed as follow            

 If   mjfjE ,..,.2,1,0   
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 (ii) )cov( f                                                                                   (3.15) 
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 (iii)     0E                                                                                         (3.16) 

   piii .,..,2,1,var    and kiki  ,0),cov(  , therefore 



International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 8 No. 4 2022 www.iiardjournals.org 
 

 
 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 32 

 (4)  





























p







...00

.

.

.

0...0

0...0

)cov(

2

1

                                                           (3.17)

 

and   jandiallforf ji 0,cov   

However, Equation (3.11) can be written as 
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Since  does not affect variances and covariance of y. 

Note:   has only a few columns, say two or three 

 In general, 

  mjandpify jiji ,...,2,1,...,2,1;,cov  
    

(3.19) 

Since ji  is the (ij)
th

 element of  , Equation (3.19) can be written as 

     fy ,cov
       

(3.20) 

If standardized variables are used, Equation (3.18) is replaced by  

                                         (3.21) 

and the loadings become correlations: 
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In partitioning variance of 
iy
 
into components due to the common factor in Equation (3.12), 

called the communality, and a components unique to 
iy
 
called the specific variance: 
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2222 ...
21 mii ii

hyCommunalit    is also called common variance 

iianceSpecific var is also called Specificity, unique variance, or residual variance. 

The two factor analysis methods considered were Principal Component Approach (PCA) and 

Maximum Likelihood Method (MLM), while MLM is divided into three parts: (a) None 

Rotation Method of the factor analysis between the variables using Maximum Likelihood; (b) 

Varimax Rotation Method of the factor analysis between the variables; and (c) Promax 

Rotation of the factor analysis between the variables. 
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Cluster Analysis  

Use clustering of observations to classify observations into groups when the groups are 

initially not known. This procedure uses an agglomerative hierarchical method that begins 

with all observations being separate, each forming its own cluster. In the first step, the two 

observations closest together are joined. In the next step, either a third observation joins the 

first two, or two other observations join together into a different cluster. This process will 

continue until all clusters are joined into one, however this single cluster is not useful for 

classification purposes. Therefore, you must decide how many groups are logical for your 

data and classify accordingly, using the following formulas; 

For Euclidean distance, 

    
j

jkjikid
2

,                                                                                      (3.24) 

where d(i,k) is the distance between observations i and k.    

For Manhattan distance, 

      
j

jkjikid ,                                                                                        (3.25)

  where d(i,k) in row i and column k is the distance between observations i and k.  

 For Pearson distance,  
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       where d(i,k) in row i and column k is the distance between observations i and k, and v(j) is the 

variance of variable j.  

Note: there are also other methods like the Square of the Euclidean and Pearson methods.  

For the correlation distance method,   

dij = 1 - rij                                                                                                                  (3.27)

                                                                                                                    

 

where rij  is the Pearson product moment correlation between variables i and j.  

 For the absolute correlation distance method,  

dij = 1 -  |  rij |                                                                                                              (3.28)

                                                                                                                    

  

             

 

where rij is the Pearson product moment correlation between variables i and j.  

In average linkage, the distance between two clusters is the average distance between an 

observation in one cluster and an observation in the other cluster. In terms of the distance 

matrix,  

    
           

  
         (3.29) 

where, Nk, Nl, and Nm are the number of observations in clusters k, l, and m  

In centroid linkage, the distance between two clusters is the distance between the cluster 

centroids or means. In terms of the distance matrix,   

    
           

  
 

       

  
                                                                                        (3.30) 

where, Nk, Nl, and Nm are the number of observations in clusters k, l, and m 

In complete linkage, or "furthest neighbor," the distance between two clusters is the maximum 

distance between an observation in one cluster and an observation in the other cluster. In 

terms of the distance matrix,  
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dmj = max (dkj, dlj)          (3.31) 

In McQuitty's linkage, the formula for the distance matrix = 

    
       

 
           (3.32) 

In median linkage, the distance between two clusters is the median distance between an 

observation in one cluster and an observation in the other cluster. In terms of the distance 

matrix,  

    
       

 
 

   

 
         (3.33) 

In single linkage, or "nearest neighbor," the distance between two clusters is the minimum 

distance between an observation in one cluster and an observation in the other cluster. When 

observations lie close together, single linkage tends to identify long chain-like clusters that 

can have a relatively large distance separating observations at either end of the chain. In terms 

of the distance matrix, 

dmj = min (dkj, dlj)                                                                                      (3.34) 

In Ward's linkage, the distance between two clusters is the sum of squared deviations from 

points to centroids. The objective of Ward's linkage is to minimize the within-cluster sum of 

squares. In terms of the distance matrix, 

    
(     )    (     )         

     
         (3.35) 

where, Nj, Nk, Nl, and Nm are the number of observations in clusters j, k, l, and m 

In Ward's linkage, it is possible for the distance between two clusters to be larger than d(max), 

the maximum value in the original distance matrix, D. If this happens, the similarity will be 

negative.  

K-means clustering begins with a grouping of observations into a predefined number of 

clusters. 

i. Evaluates each observation, moving it into the nearest cluster. The nearest cluster is 

the one which has the smallest Euclidean distance between the observation and the 

centroid of the cluster. 

ii. When a cluster changes, by losing or gaining an observation, recalculate the cluster 

centroid. 

iii. This process is repeated until no more observations can be moved into a different 

cluster. At this point, all observations are in their nearest cluster according to the 

criterion listed above. 

Unlike hierarchical clustering of observations, it is possible for two observations to be split 

into separate clusters after they are joined together. K-means procedures work best when you 

provide good starting points for clusters.  

The final grouping of clusters (also called the final partition) is the grouping of clusters which 

will, hopefully, identify groups whose observations or variables share common 

characteristics. The decision about final grouping is also called cutting the dendrogram. The 

complete dendrogram (tree diagram) is a graphical depiction of the amalgamation of 
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observations or variables into one cluster. Cutting the dendrogram is akin to drawing a line 

across the dendrogram to specify the final grouping. 

How do you know where to cut the dendrogram? You might first execute cluster analysis 

without specifying a final partition. Examine the similarity and distance levels in the Session 

window results and in the dendrogram. You can view the similarity levels by placing your 

mouse pointer over a horizontal line in the dendrogram. The similarity level at any step is the 

percent of the minimum distance at that step relative to the maximum inter-observation 

distance in the data. The pattern of how similarity or distance values change from step to step 

can help you to choose the final grouping. The step where the values change abruptly may 

identify a good point for cutting the dendrogram, if this makes sense for your data. After 

choosing where you wish to make your partition, rerun the clustering procedure, using either 

Number of clusters or Similarity level to give you either a set number of groups or a similarly 

level for cutting the dendrogram. Examine the resulting clusters in the final partition to see if 

the grouping seems logical. Looking at dendrograms for different final groupings can also 

help you to decide which one makes the most sense for your data. 

 

 

 

Results 
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Table 4.1: Comparison of Principal Components Factor Analysis of the Economic Variables using different Rotations 

Rotation 

Method 

Variance explained 

criterion 1 2 3 4 5 6 7 8 9 10 11 12 13 

None SS Loadings 18.04 8.52 0.94 0.71 0.58 0.33 0.25 0.23 0.19 0.16 0.13 0.09 0.08 

Proportion 0.58 0.28 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

Cumulative 0.58 0.86 0.89 0.91 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.97 0.98 

Varimax SS Loadings 17.94 8.20 1.37 0.86 0.56 0.29 0.28 0.22 0.18 0.10 0.10 0.07 0.07 

Proportion 0.58 0.27 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

Cumulative 0.58 0.85 0.89 0.92 0.94 0.95 0.96 0.97 0.98 0.98 0.98 0.98 0.98 

Promax SS Loadings 16.32 6.26 1.12 0.86 0.75 0.63 0.53 0.41 0.40 0.31 0.23 0.18 0.13 

Proportion 0.53 0.20 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 

Cumulative 0.53 0.73 0.77 0.80 0.82 0.84 0.86 0.87 0.88 0.89 0.90 0.90 0.91 
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Table 4.2: Factor Analysis of the Economic Variables using PCA for None, Varimax and 

Promax Rotation 

Test of the hypothesis that 13 factors are sufficient. 

 The chi square statistic is 1025.64 on 140 degrees of freedom. 

The p-value is 1.26e-134 ** 

      

 

Figure 4.1: Economic Variables Scree Plot of the Cumulative Variance Explained by the 

Three Rotation Methods Principal Components 

Table 4.2 and Figure 4.1 show results of the three different rotation methods used (None, 

Varimax and Promax rotation methods) and Table 4.7 shows the rotation methods chi-square 

statistic with its p-value result. This result identified only 13 factors are sufficient for describing 

the total variance accounted for in the economic variables. However, none and varimax rotation 

methods show similar variation, while the promax rotation method differ slightly in Figure 4.1.   

 

Table 4.3: Communality and Uniqueness of the Factor Analysis 
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Principal Component  

None Varimax Promax

Variable Communality Uniqueness 

crop production  0.991348 0.008652 

live stock 0.995429 0.004571 

Forestry 0.995044 0.004956 

Fishing 0.984032 0.015968 

cp&ng 0.992328 0.007673 

metal ores 9.95E-01 4.96E-03 

Quarrying &O M 9.34E-01 6.58E-02 

oil refining 9.49E-01 5.09E-02 

Cement 9.96E-01 3.68E-03 

other manuf. 7.82E-01 2.18E-01 

B&C 9.97E-01 2.86E-03 

W&RT 9.95E-01 4.94E-03 

road trans. 9.97E-01 3.40E-03 

R T& Pipeline 8.93E-01 1.07E-01 

water trans 9.81E-01 1.87E-02 

air trans 9.95E-01 4.75E-03 
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Figure 4.2: Economic Variables Scree Plot of the Cumulative Variance Explained by 

Principal Components Factor Analysis 

Table 4.3 and Figure 4.2 show the communality and uniqueness of the factor analysis together, 

where all the economic variables principal components lie between 78.2% and 99.7% 

respectfully, of the total variability. Thus, most of the data structure can be captured in the first-

thirteen principal component underlying dimensions. The remaining principal components 

account for a very small proportion of the variability and are probably unimportant. The Scree 

plot provides this information visually (Figure 4.2). 

Cluster Analysis of the Economic Variables   

In order to find the optimal number of clusters for a k-means, the following four approaches were 

considered in this work: 1) Elbow method (which uses the within cluster sums of squares); 2) 

Average silhouette method; 3) Gap statistic method and 4) NbClust() function (package) to 

O T S 9.96E-01 4.32E-03 

Telecom. 9.95E-01 4.85E-03 

Post 9.62E-01 3.84E-02 

Electricity 9.79E-01 0.020612 

Water 9.96E-01 4.23E-03 

Hotels & Rest. 9.95E-01 4.71E-03 

financial inst. 9.88E-01 1.18E-02 

Insurance 9.96E-01 3.93E-03 

real estate 0.997812 0.002188 

business S 8.98E-01 1.02E-01 

Pub Admin 9.97E-01 3.30E-03 

Education 9.97E-01 3.42E-03 

Health 9.99E-01 1.41E-03 

Other Services 9.91E-01 8.70E-03 

Broadcasting 0.996172 0.003828 
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implement the D index method. The above methods are displayed below in Figures 4.3 and its 

scree plot, 4.4 and 4.5. 

 

Figure 4.3: Elbow Method for Number of Clusters Identification for the Economic 

Variables 

 

Figure 4.8: Scree Plot of the Within Cluster Sum of Squares for the Economic Variables 
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Figure 4.4: Silhouette Method for Number of Clusters Identification for the Economic 

Variables 

 

 

Figure 4.5: Gap Statistic Method for Number of Clusters Identification for the Economic 

Variables 

 

 



International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 8 No. 4 2022 www.iiardjournals.org 
 

 
 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 41 

Figure 4.6: D Index Statistic Method for Number of Clusters Identification I for the 

Economic Variables 

The Elbow method seems to suggest 4 clusters. The location of a knee in the plot is usually 

considered as an indicator of the appropriate number of clusters because it means that adding 

another cluster does not improve much better the partition; the Silhouette method seems to 

suggest 3 clusters. Note that the Silhouette method measures the quality of a clustering and 

determines how well each point lies within its cluster. While the Gap Statistic method suggests 

10 clusters. The three methods done so far on the economic variables are suggesting that the 

optimal number of clusters is between 3 and 10. The D index is a graphical method of 

determining the number of clusters. In the plot of D index, we seek a significant knee (the 

significant peak in D index second differences plot) that corresponds to a significant increase of 

the value of the measure. So, the D index method constructed using the Euclidean distance and 

permuted optimal number of factors around the interval 3 and 10; for 3 as the minimum and 10 

as the maximum number of clusters gave the result displayed in Figure 4.6a above and the 

corresponding optimal number in Figure 4.6b suggest 8 clusters. 
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Figure 4.7: D Index Statistic Method for Number of Clusters Identification II for the 

Economic Variables 

In Figure 4.7 among all indices, 6 proposed 4 as the best number of clusters, 11 proposed 5 as the 

best number of cluster, 1 proposed 6 as the best number of clusters, 0 proposed 7 as the best 

number of cluster, 2 proposed 8 as the best number of clusters, 1 proposed 9 as the best number 

of clusters and 3 proposed 10 as the best number of clusters. According to the majority rule, the 

best number of clusters is 10. Finally, the four methods have given an idea of the number of 

clusters that is optimal in grouping the economic variables’ data. Hence, the highest number of 

clusters is chosen and this number is 10. To confirm that this chosen number of classes is indeed 

optimal, there is a way to evaluate the quality of your clustering via the silhouette plot (which 

shows the silhouette coefficient on the y axis). We draw the silhouette plot for 10 clusters, as 

chosen. The silhouette plot for economic variables shows that the best number of clusters is 7 in 

Figure 4.9. More so, the cluster mapping output for economic variables and the grouping of the 

economic variables are shown in Figures 4.10, 4.11 and Table 4.9. 
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Figure 4.9: Silhouette Plot for Economic Variables 

 

Figure 4.10: Cluster Mapping Output for Economic Variables 
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A principal component analysis is performed to represent the variables in a 2 dimensions’ plane 

as shown in Figure 4.10. The two components from the principal component analysis explain 

about 93.96% of the point variability for the cluster model. The cluster plot in Figure 4.11 gives 

further clarification on the percentage contribution of each of these principal components. 

Figure 4.11: Cluster Plot Output for Economic Variables 

Having determined the optimal number of clusters, the next step is to normalize the data set. The 

data set is normalized and k-means cluster analysis was conducted. Hence, the economic 

variables data chooses best number of clusters which is 7, is as follow in Table 4.9. Clusters 1, 6 

and 7 have one economic variable each; while Cluster 3 has two economic variables; Clusters 4 

and 5 have three economic variables each and Cluster 2 has the highest number of economic 

variables with 20 variables. 

 

Crime Variables Analysis    

Normal distribution in Minitab 21 was used to generate small and large sample. 29 random 

numbers were generated from a normal distribution with their means and standard deviations for 

small sample. 40 random numbers were simulated plus the actual 9 observations to give the large 

sample (that is 49 observations for large sample).  

 

 

 

 

 

Table 4.4: Comparison of Principal Component Factor Analysis using Different Rotation 

Methods for Large Sample Size of Crime Variables 
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Rotation 

Method 

Variance 

explained 

criterion 

Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 

Facto

r 6 

Facto

r 7 

None 

SS Loadings 1.66 1.642 1.453 1.067 1.03 0.838 0.793 

Proportion 0.098 0.097 0.085 0.063 0.061 0.049 0.047 

Cumulative 0.098 0.194 0.28 0.342 0.403 0.452 0.499 

Varimax 

SS Loadings 1.541 1.391 1.254 1.213 1.184 1.021 0.878 

Proportion 0.091 0.082 0.074 0.071 0.07 0.06 0.052 

Cumulative 0.091 0.172 0.246 0.318 0.387 0.447 0.499 

Promax 

SS Loadings 1.448 1.412 1.352 1.343 1.228 1.189 1.04 

Proportion 0.085 0.083 0.08 0.079 0.072 0.07 0.061 

Cumulative 0.085 0.168 0.248 0.327 0.399 0.469 0.53 

 

 

 

Figure 4.12: Large Sample Size for Crime Variables Scree Plot of the Cumulative Variance 

Explained by the Rotation Methods Principal Component 

 

 

 

Table 4.5: Factor Analysis using PCA for Promax Rotation of the Large Sample Size for 

Crime Variables 

Call: 

       

0

0.1

0.2

0.3

0.4

0.5

0.6

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

V
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n
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Rotation Method 

None Rotation Method Varimax Rotation Method Promax Rotation Method
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factanal(x = mydata, factors = 7, rotation = "promax") 

 

        Uniquenesses: 

     X1 X2 X3 X4 X5 X6 X7 X8 

0.681 0.356 0.097 0.756 0.46 0.238 0.598 0.723 

X9 X10 X11 X12 X13 X14 

  0.629 0.823 0.789 0.738 0.005 0.203 

  X15 X16 X17 

     0.41 0.464 0.55 

     

        Loadings: 

      

 

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 

X1 0.354 -0.116 -0.331 -0.212 

   X2 -0.179 0.113 0.121 -0.106 0.119 0.817 -0.174 

X3 0.99 -0.12 -0.142 0.125 

   X4 0.198 -0.102 -0.131 -0.464 

   X5 0.158 0.164 -0.179 0.735 

   X6 0.933 -0.214 -0.134 0.126 0.122 

  X7 0.328 -0.153 0.5 0.16 

   X8 0.341 -0.12 0.218 0.277 

   X9 0.329 0.305 -0.155 -0.187 

   X10 0.27 -0.146 0.157 

    X11 -0.131 0.388 

     X12 0.105 0.254 0.368 0.11 

   X13 -0.146 1.025 -0.101 0.192 

   X14 -0.125 -0.215 0.928 

    X15 -0.24 0.759 

     X16 0.241 -0.103 0.335 0.497 

   X17 0.228 0.394 0.127 -0.195 0.221 -0.139 

 

        Test of the hypothesis that 7 factors are sufficient. 

 The chi square statistic is 26.03 on 38 degrees of freedom. 

The p-value is 0.93  

      

 

Table 4.5 and Figure 4.12 show the results of the three different rotation methods used (None, 

Varimax and Promax rotation methods) and Table 4.15 shows the rotation methods chi-square 

statistic with its p-value result. This result identified only 7 factors are sufficient for describing 

the total variance accounted for in the large sample size for crime variables, since the p-value 
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(0.93) is not significant. However, the three rotation methods display similar variation in Figure 

4.12.   

Table 4.6: Communality and Uniqueness of the Factor Analysis of the Large Sample Size 

for Crime Variables 

Variable Full Name Communality Uniqueness 

X1 Homicide 0.319152 0.680848 

X2 Offences against morality 0.644443 0.355557 

X3 Other offences against persons 0.903217 0.096783 

X4 Robbery 0.243693 0.756307 

X5 Breakings 0.539893 0.460107 

X6 Theft of stock 0.762216 0.237784 

X7 Stealing 0.401838 0.598162 

X8 Theft by servant 0.277178 0.722822 

X9 Vehicle and other thefts 0.37109 0.62891 

X10 Dangerous drugs 0.17691 0.82309 

X11 Serious Traffic offences 0.211304 0.788696 

X12 Criminal damage 0.262148 0.737852 

X13 Economic crimes 0.995004 0.004996 

X14 Corruption 0.797176 0.202824 

X15 Offences involving police officers 0.59023 0.40977 

X16 Offences  involving tourist 0.536142 0.463858 

X17 Other penal code offences 0.450049 0.549951 
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Figure 4.13: Large Sample Size for Crime Variables Scree plot of the Cumulative Variance 

Explained by Principal Components 

 

Table 4.6 and Figure 4.13 show the communality and uniqueness of the factor analysis together, 

where all the large sample size for crime variables principal components lie between 17.7% and 

99.5% respectfully, of the total variability. Thus, most of the data structure can be captured in the 

seven principal components underlying dimensions from Figure 4.13, since it accounts for 

almost 75% proportion of the variability. The remaining principal components account for 25% 

proportion of the variability and are probably unimportant. The Scree plot provides this 

information visually (Figure 4.13). 

Cluster Analysis of the Large Sample Size for Crime Rate Variables   

Similarly, in order to find the optimal number of clusters for a k-means, the following four 

approaches were considered in this work: (1) Elbow method (which uses the within cluster sums 

of squares); (2) Average silhouette method; (3) Gap statistic method and (4) NbClust() function 

(package) to implement the D index method. The Figures of the above methods are displayed in 

Figures 4.14, 4.15 and 4.16. 
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Figure 4.14: Elbow Method for Number of Clusters Identification for Large Sample Size of 

the Crime Variables 

Figure 4.14 shows that the Elbow method seems to suggest 7 clusters. The location of a knee in 

the plot is usually considered as an indicator of the appropriate number of cluster because it 

means that adding another cluster does not improve much better the partition.  
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Figure 4.15: Silhouette Method for Number of Clusters Identification for Large Sample 

Size of the Crime Variables 

Figure 4.15 Depicts that the Silhouette method seems to suggest 2 clusters. Note that the 

Silhouette method measures the quality of a clustering and determines how well each point lies 

within its cluster. 
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Figure 4.16: Gap Statistic Method for Number of Clusters Identification for Large Sample 

Size of the Crime Variables 

Figure 4.16 shows that the Gap Statistic method suggests 10 clusters. The three methods done on 

large sample size for crime variables so far are suggesting that the optimal number of clusters is 

between 2 and 10. In addition to these methods above, the D index method constructed below 

using the Euclidean distance and permuted optimal number of factors around the interval 4 and 

5; for 4 as the minimum and 5 as the maximum number of clusters gave the result displayed in 

Figure 4.17a and the corresponding optimal number in Figure 4.17b suggests 5 clusters. 
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Figure 4.17: D Index Statistic Method for Number of Clusters Identification I for Large 

Sample Size of the Crime Variables 

 

Figure 4.18: D Index Statistic Method for Number of Clusters Identification II for Large 

Sample Size of the Crime Variables 
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In Figure 4.18, 7 proposed 2 as the best number of clusters, 8 proposed 3 as the best number of 

clusters, 5 proposed 4 as the best number of cluster and 3 proposed 5 as the best number of 

clusters. According to the majority rule, the best number of cluster is 5, however Figure 4.19 

proposed 7 as the best number of clusters for large sample size of the crime variables. 

Figure 4.19: Silhouette Plot for the Years II for Large Sample Size of the Crime Variables 

Figure 4.20: Large Sample Size of the Crime Variables Cluster Mapping Output for the 

Years 
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Figure 4.21: Large Sample Size of the Crime Variables Cluster Plot output for the Years 

A principal component analysis is performed to represent the variables in a 5 dimensions’ plane 

as shown in Figure 4.20. The two components from the principal component analysis explain 

about 40.28% of the point variability for the cluster model. The cluster plot in Figure 4.21 gives 

further clarification on the percentage contribution of each of these principal components, which 

is 11.6% and 15% respectively for the two components. 

The simulated data for large sample size of the crime variables have 49 years, starting from 1972 

to 2020. Hence, the yearly clustering for the large sample size of crime variables was done in 

Table 4.17. 

 

Table 4.7: The Yearly Clustering for the Large Sample Size of Crime Variables 

Cluster cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 

Years 1976 2006 1972 1973 1985 1974 1977 

  1980 2020 1983 1979 1987 1975 1978 

  1994 

 

1990 1986 1991 1981 1982 

  2000 

 

1997 1988 1999 1984 1989 

  2007 

 

2002 1995 2012 1992 1996 

  2010 

 

2005 

 

2013 1993 1998 

  2011 

 

2014 

  

2003 2001 

  

  

2015 

  

2004 2008 

  

  

2016 

  

2017 2009 

  

     

2018 
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            2019   

Number of Year  7 2 9 5 6 11 9 

 

The yearly clustering for the large sample size of the crime variables data chooses best number 

of clusters which is 7, is as follow in Table 4.17. Cluster 1 has seven years’ crimes; Cluster 2 has 

only two years’ crimes; while Clusters 3 and 7 have nine years of crimes each; Clusters 4 and 5 

have five and six years of crimes respectively and Cluster 6 have the highest number of years 

with 11 crimes.    

 

Figure 4.22: Large Sample Size of the Crime Variables Cluster Mapping for Crime Rates 
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Figure 4.23: Silhouette Plot for the Crime Rates (Large Sample Size of the Crime 

Variables) 

 

Figure 4.24: Large Sample Size of the Crime Variables Cluster Plot Output  
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Figure 4.22 is a principal component analysis performed where two components from the 

principal component analysis explain about 97.39% of the point variability for the cluster model. 

Figure 4.23 shows majority of the silhouette coefficients are positive and also suggests 7 as the 

best number of cluster. The cluster plot in Figure 4.24 gives further clarification on the 

percentage contribution of each of these principal components, which is 97.8% and 0.9% 

respectively for the two components. Next, the simulated data for large sample size of the crime 

rate classification was done below. 

 

Table 4.8: The Clustering for the Large Sample Size of Crime Rate Variables 

cluster cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 

crime 

rate 

variables 

Stealing Homicide 
Dangerou

s drugs 

Serious 

Traffic 

offences 

Offences 

against 

morality 

Robbery 

Other 

offences 

against 

persons 

  

Theft of 

stock 

 

Corruption Breaking

s 

Criminal 

damage 

 

  

Theft by 

servant 

 

Offences 

involving 

police 

officers 

Other 

penal 

code 

offences 

Economi

c crimes 

 

  

 

Vehicle 

and other 

thefts 

 

Offences 

involving 

tourist 

   Number 

of 

Variable 1 4 1 4 3 3 1 

 

Table 4.18 shows the clustering for the large sample size of the crime rate variables where the 

chosen best number of clusters is 7. Then, Clusters 1, 3 and 7 have only one crime rate variable 

each; Clusters 5 and 6 have three crime rate variables each; while Clusters 2 and 4 have four 

crime rate variables each, which are the highest number of crime rate variables.  

 

 Small Sample size for Crimes in Nigeria  

The factor analysis by the principal component analysis approach with three different rotations 

were done and presented in Table 4.23. The rotation with the highest cumulative variance 

explained by the four factors extracted is chosen as the best rotation to be used for the study. 

 

Table 4.9: Comparison of Principal Component Factor Analysis using different Rotations 

(Small Sample size for Crime Rate variables) 
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Rotation Method Variance explained 

criterion 

Factor1 Factor2 Factor3 Factor4 

None 

SS Loadings  1.855 1.702 1.059 1.047 

Proportion Var 0.185 0.17 0.106 0.105 

Cumulative Var 0.185 0.356 0.462 0.566 

Varimax 

SS Loadings 1.761 1.453 1.293 1.156 

Proportion Var 0.176 0.145 0.129 0.116 

Cumulative Var 0.176 0.321 0.451 0.566 

Promax 

SS Loadings 1.803 1.441 1.336 1.144 

Proportion Var 0.18 0.144 0.134 0.114 

Cumulative Var 0.18 0.324 0.458 0.572 

 

 

 

Figure 4.25: Small Sample Size for Crime Variables Scree Plot of the Cumulative Variance 

Explained by the Rotation Methods Principal Components 

 

 

In Figure 4.25 and Table 4.23, the row Cumulative Var gives the cumulative proportion of 

variance explained by each factor. These numbers range from 0 to 1. The row Proportion 

Var gives the proportion of variance explained by each factor, and the row SS loadings gives the 

sum of squared loadings. This is sometimes used to determine the value of a particular factor. A 

factor is worth keeping if the SS loading is greater than 1 (Kaiser’s rule). Based on the 

cumulative var for the three rotations, the Promax rotation has the highest cumulative proportion 

of variance in the ten variables explained by the four factors extracted and therefore is chosen as 

0
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the best rotation for the factor analysis. The principal component analysis using the Promax 

rotation method output is given in Table 4.24. 

Table 4.10: Factor Analysis using PCA for Promax Rotation (Small Sample Size for Crime 

Variables) 

Call: factanal(x = mydata, factors = 4, rotation = "promax") 

Uniquenesses: 

   X1     X3     X5     X7     X9    X12    X13    X14    X15    X16  

0.005  0.795  0.502  0.630  0.262  0.819  0.005  0.754  0.005  0.560  

Loadings: 

     Factor1  Factor2  Factor3  Factor4 

X1                       1.027          

X3    0.211    -0.270    0.194          

X5    0.637   -0.107   -0.153    0.252  

X7    0.242    0.487    -0.227   -0.173  

X9   -0.824  -0.204   -0.205          

X12  -0.296    0.214               0.161  

X13   0.156     0.100               0.984  

X14  -0.314             -0.271    0.197  

X15             1.002              0.108  

X16   0.636    -0.121   -0.207          

Factor Correlations: 

          Factor1  Factor2   Factor3   Factor4 

Factor1   1.0000  -0.3032  -0.13622  -0.09366 

Factor2  -0.3032   1.0000   0.24596   0.09333 

Factor3  -0.1362   0.2460   1.00000   0.00638 

Factor4  -0.0937   0.0933   0.00638   1.00000 

Test of the hypothesis that 4 factors are sufficient. 

The chi square statistic is 9.35 on 11 degrees of freedom. 

The p-value is 0.589 

 

The first chunk in Table 4.24 provides the uniqueness, which range from 0 to 1. The uniqueness 

corresponds to the proportion of variability, which cannot be explained by a linear combination 

of the factors. A high uniqueness for a variable indicates that the factors do not account well for 

its variance. The next section is the loadings, which range from −1 to 1. The loadings are the 

contribution of each original variable to the factors. Variables with a high loading are well 

explained by the factor. Notice there is no entry for certain variables. That is because R-software 

does not print loadings less than 0.1. This is meant to help us spot groups of variables. The chi – 

squared test of hypothesis that test the hypothesis that 4 factors are sufficient for this model is 

not significant at 5% level of significance (p-value 0.589 < alpha 0.05). This means that the 

optimal number of factors is not significantly different from four). The proportion of the 

variability is denoted as communality. An appropriate factor model results in low values for 

uniqueness and high values for communality. The communality and uniqueness are displayed in 

Table 4.25. 
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Table 4.11: Communality and Uniqueness of the factor analysis of the Small Sample Size 

for Crime Rate Variables 

Variable Full Name Communality Uniqueness 

X1 Homicide 0.995004 0.004996 

X3 Other offences against persons 0.205171 0.794829 

X5 Breakings 0.497876 0.502124 

X7 Stealing 0.369719 0.630281 

X9 Vehicle and other thefts 0.737806 0.262194 

X12 Criminal damage 0.181195 0.818805 

X13 Economic crimes 0.99500 0.00500 

X14 Corruption 0.245591 0.754409 

X15 Offences involving police officers 0.995003 0.004997 

X16 Offences involving tourist 0.440098 0.559902 

 

Figure 4.26: The Small Sample Size for Crime Rate Variables Scree plot of the Cumulative 

Variance Explained by the Principal Components 

 



International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 8 No. 4 2022 www.iiardjournals.org 
 

 
 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 61 

The scree plot in Figure 4.26 shows that four factors (principal components) explain about 

68.19% of the common variance in the ten variables. The residual matrix for the factor analysis 

model is computed and displayed in Table 4.26. 

Table 4.12: The Small Sample Size for Crime Rate Variables Residual Matrix 

 

X1 X3 X5 X7 X9 X12 X13 X14 X15 X16 

X1 -4E-06 0.000592 -0.00016 -0.00019 -0.00023 0.000259 0.000001 -0.00037 0 -0.00063 

X3 0.000592 -2E-06 0.096114 0.049507 0.091502 0.169056 -0.00028 -0.13916 0.000167 0.141701 

X5 -0.00016 0.096114 0 0.102194 -0.00567 0.043415 0.000239 -0.04193 -0.00042 -0.07969 

X7 -0.00019 0.049507 0.102194 0.000001 0.040401 -0.07244 0 -0.14031 0.000326 -0.09064 

X9 -0.00023 0.091502 -0.00567 0.040401 0 0.04362 0.000152 -0.06185 -0.00013 -0.04211 

X12 0.000259 0.169056 0.043415 -0.07244 0.04362 -1E-06 -0.00053 0.114534 0.000964 0.110627 

X13 0.000001 -0.00028 0.000239 0 0.000152 -0.00053 0 -0.00016 0.000001 -6E-06 

X14 -0.00037 -0.13916 -0.04193 -0.14031 -0.06185 0.114534 -0.00016 0 -0.0001 -0.00461 

X15 0 0.000167 -0.00042 0.000326 -0.00013 0.000964 0.000001 -0.0001 -3E-06 0.000229 

X16 -0.00063 0.141701 -0.07969 -0.09064 -0.04211 0.110627 -6E-06 -0.00461 0.000229 -1E-06 

 

The matrix in Table 4.26 is called the residual matrix. Numbers close to 0 indicate that our factor 

model is a good representation of the underlying concept. It is evident that the factor model with 

Promax Rotation is a good representation of the underlying concept. 

 

 

  

 

 

 

Cluster Analysis of the Small Sample Size for Crime Rate Variables   
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Likewise, in order to find the optimal number of clusters for a k-means, the following four 

approaches are considered in this work: The above methods are displayed in Figures 4.27, 4.28 

and 4.29. 

 

 

Figure 4.27: Elbow Method for Number of Clusters Identification for the Small Sample 

Size of the Crime Rate Variables 

 The location of a knee in the plot is usually considered as an indicator of the appropriate number 

of clusters because it means that adding another cluster does not improve much better the 

partition. This method seems to suggest 5 clusters in Figure 4.27. 
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Figure 4.28: Silhouette Method for Number of Clusters Identification for the Small Sample 

Size of the Crime Rate Variables 

The Silhouette method measures the quality of a clustering and determines how well each point 

lies within its cluster. The Silhouette method suggests 2 clusters in Figure 4.28. 
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Figure 4.29: Gap Statistic Method for Number of Clusters Identification for the Small 

Sample Size of the Crime Rate Variables 

The optimal number of clusters is the one that maximizes the gap statistic. After 500 bootstraps 

with a starting point of 25, this method suggests only 1 cluster (which is therefore a useless 

clustering). The three methods done so far are suggesting that the optimal number of clusters is 

between 1 and 5. So, the D index method constructed using the Euclidean distance and permuted 

optimal number of factors around the interval 1 and 5 for 1 as the minimum and 5 as the 

maximum number of cluster gave the result displayed in Figure 4.30 and the corresponding 

optimal number in Figure 4.30. 
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Figure 4.30: D Index Statistic Method for Number of Clusters Identification I for the Small 

Sample Size of the Crime Rate Variables 

The D index is a graphical method of determining the number of clusters. In the plot of D index 

in Figure 4.30, we seek a significant knee (the significant peak in D index second differences 

plot) that corresponds to a significant increase of the value of the measure. 
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Figure 4.31: D Index Statistic Method for Number of Cluster Identification II for the Small 

Sample Size of the Crime Rate Variables 

Among all indices in Figure 4.31; 6 proposed 2 as the best number of clusters, 10 proposed 3 as 

the best number of clusters, 5 proposed 4 as the best number of clusters and 2 proposed 5 as the 

best number of clusters. According to the majority rule, the best number of clusters is 3. 

Finally, the four methods have given an idea of the number of clusters that is optimal in grouping 

the data. We therefore choose the highest number of cluster and this number is 5. To confirm that 

this chosen number of classes is indeed optimal, there is a way to evaluate the quality of your 

clustering via the silhouette plot (which shows the silhouette coefficient on the y axis). We draw 

the silhouette plot for 5 clusters, as chosen. Figure 4.32 shows the output of the plot. 
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Figure 4.32: Silhouette Plot for the Small Sample Size of the Crime Rate Variables 

As a reminder, the interpretation of the silhouette coefficient is as follows: 

i. Greater than zero means that the observation is well grouped. The closer the 

coefficient is to 1, the better the observation is grouped. 

ii. Less than zero means that the observation has been placed in the wrong cluster. 

iii. Equal to zero means that the observation is between two clusters. 

Since a large majority of the coefficients are positive, it indicates that the choice of five as the 

optimal number of clusters is okay. Having determined the optimal number of clusters, the next 

step is to normalize the data set. The data set is normalized and k-means cluster analysis was 

conducted. The cluster mapping is displayed in Figure 4.33 
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Figure 4.33: Cluster Mapping Output for the Small Sample Size of the Crime Rate 

Variables 

A principal component analysis is performed to represent the variables in a 2 dimensions’ plane 

as shown in Figure 4.33. The two components from the principal component analysis explain 

about 44.13% of the point variability for the cluster model. The cluster plot in Figure 4.34 gives 

further clarification on the percentage contribution of each of these principal components. 

 

 
Figure 4.34: Cluster Plot Output for the Small Sample Size of the Crime Rate Variables 

Table 4.13: The Yearly Clustering for the Small Sample Size of Crime Rate Variables 

S/N X1 X3 X5 X7 X9 X12 X13 X14 X15 X16 Cluster 

1 2498 16586 5616 12359 1232 4071 2832 111 86 58 3 

2 2641 23174 6244 9054 1192 4044 4347 118 59 67 4 

3 2562 20938 6601 8954 896 2710 3422 88 34 65 4 

4 2749 20834 7456 9306 1207 3418 3893 109 36 6 4 

5 2482 18542 6291 9758 1510 4526 4710 155 95 20 2 

6 2698 22948 5898 11856 1054 4343 2352 113 97 46 5 

7 2653 21579 5820 12272 1264 3755 3064 107 97 7 5 

8 2696 21690 6472 11315 1063 3404 2950 136 2 34 4 

9 2526 17900 6275 9347 1358 4137 3040 130 49 9 1 

10 2799 20332 6136 10642 1432 4291 3296 70 46 10 5 

11 2644 23246 6402 11362 1411 3597 3432 107 64 46 4 

12 2529 16193 5101 10021 1319 3815 2968 150 63 3 1 

13 2737 22468 6141 11149 1367 3776 3319 103 29 34 4 

14 2591 18015 6198 11594 1418 3722 2787 104 62 39 3 

15 2651 23786 7493 9969 1132 4381 2632 92 -35 61 4 

16 2342 18535 6474 12293 1371 3376 3269 143 79 38 3 

17 2476 18991 7142 13321 980 3372 4132 103 71 74 3 

18 2646 20534 6149 13994 1144 3568 3496 74 98 13 5 

19 2745 19147 5128 7300 1614 3389 2497 133 13 15 1 

20 2222 20178 6271 12308 1561 4376 3027 102 57 27 3 

21 2818 21403 5643 8709 1344 4014 3924 89 28 47 4 
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22 2902 19663 6354 10941 1136 2840 2378 89 41 33 5 

23 2531 21942 5575 10765 1675 4200 2882 167 8 25 1 

24 2548 19327 6494 9930 1193 4033 3738 123 43 45 4 

25 2593 21074 5859 11309 1412 4314 3368 128 124 27 2 

26 2793 19960 4807 8271 1271 4296 2999 125 23 29 1 

27 2781 19066 6594 10650 1087 4802 3442 118 134 38 2 

28 2717 20324 5194 11586 1484 3499 2614 61 39 13 5 

29 2722 17470 6316 13397 1249 4156 4250 152 84 20 2 

 

Table 4.27 shows the yearly clustering for the small sample size of crime rate variables suggests 

5 as the best number of clusters with cluster 4 consisting of the highest number of years.  

 

Figure 4.35: Cluster Mapping for the Small Sample Size of the Crime Rate Variables 
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Figure 4.36: Silhouette Plot for the Small Sample Size of the Crime Rate Variables 

 

Figure 4.37: Cluster plot Output for the Small Sample Size of the Crime Rate Variables 



International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 8 No. 4 2022 www.iiardjournals.org 
 

 
 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 71 

 

The two components from the principal component analysis explain about 97.44% of the point 

variability for the cluster model in Figure 4.35. The cluster plots in Figure 4.36 and 4.37 give 

further clarification on the percentage contribution of each of these principal components. 

 

Table 4.28a: The Clustering for the Small Sample Size of Crime Rate Variables 

Crimes Cluster 

Stealing 1 

Vehicle and other thefts 2 

Corruption 2 

Offences involving police officers 2 

Offences  involving tourist 2 

Other offences against persons 3 

Homicide 4 

Criminal damage 4 

Economic crimes 4 

Breakings 5 

 

 

Table 4.28b: The Clustering for the small Sample Size of Crime Rate Variables 

Cluster cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 

Crime Rate 

Variables 

Stealing 
Vehicle and other 

thefts 

Other offences 

against persons 
Homicide Breakings 

  

Corruption 

 

Criminal 

damage  

  

Offences 

involving police 

officers 

 

Economic 

crimes 
 

  

 

Offences  

involving tourist 

 

 

 Number of 

Variable 1 4 1 3 1 

 

Table 4.28b shows the clustering for the small sample size of the crime rate variables where the 

chosen best number of cluster is 5. Then, Clusters 1, 3 and 5 have only one crime rate variable; 

Cluster 4 has three crime rate variables while Clusters 2 has four crime rate variables, which is 

the highest number of crime rate variables.   
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CONCLUSION 
The three different rotation methods (None, Varimax and Promax rotation methods) result 

indicated that None and Varimax rotation methods exhibit similar variation, while the Promax 

rotation method differ slightly in terms of the economic variables data set, while the three 

different rotation methods results for large and small sample sizes (crime data) showed similar 

variation among the variables and identified some factors are sufficient for describing the total 

variance accounted in the crime variables.   

The communality and uniqueness of the factor analysis for the economic variables shows that 

principal components lie between 78.2% and 99.5% respectfully, of the total variability. Thus, 

most of the data structure can be captured in the first-thirteen principal component underlying 

dimensions. The remaining principal components account for a very small proportion of the 

variability and are probably unimportant. The communality and uniqueness of the factor analysis 

for the large sample size for crime variables principal components lies between 17.7% and 

99.5% respectfully, of the total variability. Thus, most of the data structure can be captured in the 

first-seven principal component underlying dimensions from Figure 4.13, since it accounts for 

almost 75% proportion of the variability. The remaining principal components account for 25% 

proportion of the variability and are probably unimportant. While the communality and 

uniqueness of the factor analysis for the small sample size for crime variables principal 

components lies between 18.1% and 99.3% respectfully, of the total variability.  

In order to find the optimal number of clusters in both the economic and crime figures data, we 

use four cluster analysis approaches; Elbow method, Average silhouette method, Gap statistic 

method and NbClust() function (package) to implement the D index method. These results show 

seven cluster groups for the economic variables, also seven cluster groups for the large sample 

size of crime rate variables and five cluster homogenous groups for the small sample size of 

crime rate variables. 

CONTRIBUTION  

i. This research was able to identify significant differences between (None and Varimax 

rotation methods) and the Promax rotation method of the Nigeria Economic variables 

data considered, while there are no significant differences among the three different 

rotation methods results for crime data (i.e. large and small sample sizes).  

ii. Based on the results of the study, it was identified that carrying out the cluster analysis 

(classification) process, it requires consideration of factor analysis that would show the 

effect/expression of the data structure.  

iii. This study shows that variables must be controlled when there are many covariates in the 

data set. 

iv. It was able to demonstrate the role of covariates in each data sets [Nigeria Economic 

variables: crop production, livestock and Forestry; Nigeria Crime Figures data: 

Homicide, Offences against morality, Other offences against persons, Robbery, 

Breakings, Theft of stock and Stealing]. 

v. This study was able to determine seven cluster groups for the economic variables, also 

seven cluster groups for the large sample size of crime rate variables and five cluster 

homogenous groups for the small sample size of crime rate variables. 
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